Total Syntheses of (\pm)-I sosteviol and (\pm)-Beyer-15-ene-3/,19-diol by Manganese(III)-Based Oxidative Quadruple Free-Radical Cyclization

Barry B. Snider,* J ane Y. Kiselgof, and Bruce M. Foxman
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254-9110

Received J une 25, 1998

Tetraene $\mathbf{1}$ was prepared in nine steps from the known propargylic al cohol $\mathbf{7}$ in 17% overall yield or as a $2: 1 \mathrm{E} / \mathrm{Z}$ mixture in only five steps in 7% overall yield. Oxidative cyclization of 1 with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAC})_{2}$ in MeOH at $25^{\circ} \mathrm{C}$ provided 35% of tetracycle 2. Further elaboration provided (\pm)-isosteviol (3) in six steps in 51% yield and (\pm)-beyer-15-ene-3 $\beta, 19$ diol in four steps in 17\% yield.

Introduction

We have shown that oxidation of unsaturated β-keto esters by $\mathrm{Mn}(\mathrm{OAc})_{3}$ generates a radical that will cyclize to form five to eight-membered rings. ${ }^{1}$ The cyclic radical that is formed can be oxidized by $\mathrm{Cu}(\mathrm{OAc})_{2}$ to generate an alkene. Tandem cyclizations can be carried out leading to trans-decalins (eq 1), bicycl o[3.2.1]octanes (eq

2), and other bicyclic systems; triple cyclizations also proceed efficiently. ${ }^{2}$ Zoretic has extended these reactions to quadruple cyclizations and prepared fused tri- and tetracyclic precursors of (\pm)-isospongiadiol (eq 3), ${ }^{3 b}$ Dhomosteroids (eq 4),, ${ }^{3 c}$ and other natural products. ${ }^{3}$

[^0]We were interested in the possibility of using oxidative free-radical cyclizations to preparetetracyclic diterpenes ${ }^{4}$ containing both bridged and fused rings. Oxidative cyclization of $\mathbf{1}$ should give tetracycle 2, which contains

Isosteviol (3)

Beyer-15-ene-3,19-diol (4)
the complete skeleton of, and suitable functionality for the syntheses of, isosteviol (3), the hydrolysis product of stevioside, ${ }^{5}$ and ent-beyer-15-ene-3 $\beta, 19$-diol (4), which was isolated from the leaves of Helichrysum dendroideum N. H. Wakefield. ${ }^{6}$

Results and Discussion

Preparation of 10 and 11. Propargylic alcohol 7 was prepared by a modification of the Negishi procedure. ${ }^{7}$ Methallylmagnesium chloride, prepared from magnesium turnings activated by mechanical stirring under N_{2} for

[^1]

24 h, ${ }^{8 b}$ was treated with 2,3-dichloropropene (5) to give a mixture of 2-chloro-5-methyl-1,5-hexadiene (6) and 2,5-dimethyl-1,5-hexadiene, from coupling of the Grignard reagent with unreacted methallyl chloride, that was carried on to the next step without purification. Reaction of crude 6 with 2 equiv of LDA and 1.5 equiv of paraformaldehyde afforded propargylic alcohol 7 in 20$40 \%$ yield from 5. Alternatively 7 was prepared in a single step from allene using the Hooz procedure. ${ }^{9}$ Reaction of allene with 2 equiv of $n-B u L i$ at $-78^{\circ} \mathrm{C}$ gave the propargyl dianion that was treated with methallyl chloride to give lithium acetylide 8, which was treated with paraformal dehyde to provide the desired propargylic alcohol 7 in $\approx 30 \%$ unoptimized yield.

Addition of allylmagnesium bromide to 7 in the presence of a catalytic amount of Cul by the procedure of

Duboudin and Jousseaume ${ }^{10}$ provided 67% of allylic alcohol 9 regio and stereospecifically. The one-pot reaction of allylic alcohol 9 with $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, and LiBr afforded 90% of bromide 10. ${ }^{11}$ Before elaborating 10 to tetraene 1, we chose to investigate the model triple cyclization of triene 11. Alkylation of the dianion of ethyl 2-methylacetoacetate with bromide $\mathbf{1 0}$ provided β-keto ester 11 in 79\% yield.

Oxidative Cyclization of 11. Treatment of $\mathbf{1 1}$ with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2}$ in

[^2]

$\mathrm{Mn}\left(\mathrm{OAC}_{3}\right.$
$\mathrm{Cu}(\mathrm{OAC})_{2}$
EtOH, $25^{\circ} \mathrm{C}$

16 (13\%)
17 (8\%)
EtOH at $25^{\circ} \mathrm{C}$ gave 37% of the expected tricycle 12 accompanied by 8 -endo cyclization products 16 (13\%) and 17 (8\%). The structure of $\mathbf{1 6}$ was assigned on the basis of characteristic peaks for the 4-methyl-4-pentenylidene side chain and an isolated 1,2-disubstituted cyclooctene double bond at $\delta 5.76$ (d, 1, J = 11.0) and $\delta 5.66$ (ddd, 1, $\mathrm{J}=11.0,9.0,8.4$) in the ${ }^{1} \mathrm{H}$ NMR spectrum. The data for $\mathbf{1 7}$ are similar to those of $\mathbf{1 6}$, except that the chemical shift of the 1,2-disubstituted double bond protons at δ 6.11 ($\mathrm{d}, 1, \mathrm{~J}=10.5$) and $\delta 5.65$ (ddd, 1, J = 10.5, 9.8, 7.0) indicated the presence of a conjugated diene. ${ }^{12}$ This was confirmed by the UV spectrum of 17, which showed the characteristic absorption at $222 \mathrm{~nm}(\epsilon=5500)$ for a conjugated diene.

Oxidation of 11 gave acyclic keto radical 14, which underwent two 6-endo cyclizations followed by a 5-exo cyclization to givetricyclic primary radical $\mathbf{1 3}$, which was oxidized by $\mathrm{Cu}(\mathrm{OAc})_{2}$ to provide 12. 8-Endo cyclization of keto radical 14 to give cyclooctyl radical 15 is wellprecedented. ${ }^{13}$ Oxidation of radical 15 by $\mathrm{Cu}(\mathrm{OAc})_{2}$ gave a mixture of $\mathbf{1 6}$ and $\mathbf{1 7}$. The formation of $\mathbf{1 2}$ in synthetically useful yield indicated that the synthesis of bridged and fused rings can be combined, while the formation of cyclooctenes 16 and 17 indicated that cyclooctene formation might be a side reaction in the cyclization of $\mathbf{1}$.

Synthesis of Tetraene 1. Having established that the triple cyclization of $\mathbf{1 1}$ was successful, we turned our

[^3]attention to the elaboration of bromide $\mathbf{1 0}$ to tetraene $\mathbf{1}$.

Alkylation of the copper/lithium enolate of ethyl acetate with $\mathbf{1 0}$ by the procedure of Kuwajima and Doi ${ }^{14}$ afforded 83% of unsaturated ester 18. Reduction of 18 with LAH afforded 92% of alcohol 19 , which was oxidized with PDC to give 70\% of aldehyde 20. Reaction of aldehyde $\mathbf{2 0}$ with (carbethoxyethylidene)triphenylphosphorane provided 91\% of E-isomer 21 stereospecifically, ${ }^{15}$ which was reduced with LAH to give 98% of $\mathbf{2 2}$. This sequence provided tetraenol 22 in 6 steps from trienol 9 in 44\% overall yield.

Alternatively, the Thomas tandem Claisen-Cope protocol ${ }^{16}$ afforded tetraenol 22 in only 2 steps from trienol 9, but in just 15% overall yield, as a 2:1 mixture of E/Z isomers at the central double bond. Heating a mixture of 1,1,3-triethoxy-2-methylbutane ${ }^{16 \mathrm{~b}}$ and allylic trienol 9 with a catalytic amount of o-nitrobenzoic acid in toluene at reflux for 3-5 d formed the dienyl allyl ether 24, which

underwent a Claisen rearrangement to give 25 as a diastereomeric mixture. A Cope rearrangement of tetraene $\mathbf{2 5}$ gave the more stable conjugated aldehyde 26, presumably as a mixture of four stereoisomers. Under the reaction conditions, the Z-enal isomerizes to the more stable E-enal, ${ }^{16}$ so that $\mathbf{2 6}$ is formed as a 2:1 mixture of

[^4]isomers at the central double bond in 20% yield. The aldehyde protons of $\mathbf{2 6}$ absorb at $\delta 9.38$ and 9.39 indicating that the enal is E , since Z -enals absorb at δ 10.1. The allylic carbons absorb at $\delta 35.5\left(\mathrm{C}_{5}\right)$ and $\delta 34.8$ (allyl CH_{2}) in the E-isomer and at $\delta 28.5\left(\mathrm{C}_{5}\right)$ and $\delta 41.4$ (allyl CH_{2}) in the Z-isomer. The allyl CH_{2} carbon is shifted upfield by 7 ppm by the γ-interaction with C_{8} in the E-isomer, while C_{5} is shifted upfield by 7 ppm in the Z-isomer. Reduction of $\mathbf{2 6}$ with LAH afforded 91% of $\mathbf{2 2}$ as a 2:1 E/Z mixture of tetraenols that was carried on to 1.
Tetraenol $\mathbf{2 2}$ was converted to 72% of bromide $\mathbf{2 3}$ by treatment with $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, and LiBr . Alkylation of the dianion of ethyl 2-methylacetoacetate with $\mathbf{2 3}$ afforded 83% of tetraene $\mathbf{1}$, which is available in nine steps from propargyl alcohol 7 in 17\% overall yield or as a 2:1 E/ Z mixture in only five steps from 7 in 7% overall yield.

Oxidative Quadruple Cyclization of 1. β-Keto ester 1 was treated with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and

1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2}$ in MeOH at $25^{\circ} \mathrm{C}$ to provide a complex mixture of the desired tetracycle $\mathbf{2}$ and partially cyclized compounds. Purification by chromatography on silver nitrate impregnated silica gel gave 35\% of pure 2 as a white crystalline solid, followed by the tetracycle epimeric at C_{4} (0.4\%), bicyclo[6.4.0]dodecanes 32 (1.5\%) and 33 (3\%), and partially cyclized products that could not be characterized. A similar oxidative cyclization of the $2: 1$ mixture of E / Z isomers of 1 gave 20% of the desired ester 2, followed by 1% of 32, 2\% of 33, and uncharacterized partially cyclized products.

The structure of tetracycle $\mathbf{2}$ was established by 2D NMR experiments and confirmed by X-ray crystallographic structure determination. ${ }^{17}$ The NOESY spectrum showed cross-peaks between the C_{10} methyl group at $\delta 1.06$ and $\mathrm{H}_{2 a x}$ at $\delta 2.94$ and H_{15} at $\delta 2.81$ establishing that the C_{10} methyl group and the 2-carbon bridge are cis to each other and axial on the B-ring. The absence of a cross-peak between the C_{10} and C_{4} methyl groups indicated that the ester is axial. X-ray crystallographic structure determination confirmed the stereochemical assignment of 2.

The structure of the epimeric tetracycle was tentatively assigned on the basis of 1D NOESY experiments, which showed an NOE between the C_{10} methyl group at $\delta 1.07$ and the C_{4}-methyl group at $\delta 1.34$ and between H_{15} at δ 2.80 and the C_{10} methyl group. The structures of 32 and 33 were assigned by analogy to 16 and 17. The cyclooctene protons of 33 absorb at $\delta 6.42$ and 5.47 , while those of 32 absorb at $\delta 5.76$ and 5.66.

Reaction of β-keto ester $\mathbf{1}$ with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ gave keto radical 27 that underwent a 6-endo cyclization to produce tertiary radical 28. A second 6 -endo cyclization established the trans-AB ring fusion, providing radical 29. A third 6 -endo cyclization provided 30 with transBC ring fusion. Finally, $\mathbf{3 0}$ cyclized 5 -exo since the double bond is unsubstituted giving tetracyclic primary radical 31 as a mixture of stereoisomers, both of which were oxidized by $\mathrm{Cu}(\mathrm{OAc})_{2}$ to afford $\mathbf{2}$. The final 5 -exo cyclization unambiguously established that oxidation is occurring after the fourth radical cyclization rather than during the sequence since cyclization of the cation analogous to $\mathbf{3 0}$ would have given a cyclohexyl cation.

Synthesis of Isosteviol (3). To elaborate 2 to isosteviol (3) we had to remove the carbonyl group, oxidatively cleave the exocyclic double bond to a ketone, and hydrolyze the ethyl ester. The Clemmensen and WolffKishner procedures were not compatible with the ester and alkene functionality of $\mathbf{2}$. The ketone of $\mathbf{2}$ was ther efore reduced with NaBH_{4} to give 99\% of al cohol 34. Barton-McCombie radical deoxygenation procedures proceeded poorly, so we decided to remove the hydroxyl group by dehydration followed by hydrogenation.

The exocyclic double bond of 34 was oxidatively cleaved with OsO_{4} and NalO_{4} to provide 93% of hydroxy keto ester 35. Elimination was accomplished under Mitsunobu conditions in the absence of a nucleophile as described by Aranda and Lallemand. ${ }^{18}$ Reaction of 35 with DEAD and $\mathrm{Ph}_{3} \mathrm{P}$ in refluxing THF provided 36 in good yield, which was most easily purified after hydrogenation that afforded pure 37 in 79\% yield from 35.

Ester 37 was resistant to basic hydrolysis, so isosteviol was prepared by reduction to the diol with LAH (98\%) followed by J ones' oxidation (72\%) to give isosteviol (3). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of synthetic $\mathbf{3}$ are identical to those of isosteviol obtained by acid hydrolysis of stevioside. ${ }^{5}$ I sosteviol was prepared from tetracycle 2 in 6 steps in 51% overall yield.

Synthesis of Beyer-15-ene-3/,19-diol (4). To elaborate $\mathbf{2}$ to diol $\mathbf{4}$ we had to reduce the ketone and ester groups to a 1,3-diol, oxidatively cleave the exocyclic double bond, and form the cyclopentene double bond.

[^5]

Previous beyer-15-ene syntheses have established that introduction of the double bond by elimination proceeds in poor yield under forcing conditions. ${ }^{19}$ We therefore decided to introduce the double bond from the tosylhydrazone by the Shapiro reaction. ${ }^{20}$

Keto ester 2 was reduced with LAH to give 99\% of diol 38 stereospecifically. Ozonolysis of unprotected diol 38

followed by reductive workup with $\mathrm{Me}_{2} \mathrm{~S}$ provided a mixture of the desired ketone 39 (53\%) and the anomalous ozonolysis product, ${ }^{21 a}$ Iactone 40 (15\%). F ormation of lactones by anomalous ozonolysis of 16-kaurene derivatives is well-known. ${ }^{21 b, c}$ The structure of 40 was established on the basis of the downfield shift of the C_{13} methyl group from $\delta 0.98$ in 39 to $\delta 1.35$ in 40 and the characteristic δ-lactone IR absorption at $1732 \mathrm{~cm}^{-1}$ (cyclopentanone 39 absorbs at $1741 \mathrm{~cm}^{-1}$). Oxidative

[^6]cleavage of diol 38 with OsO_{4} and NaIO_{4} was investigated sincelactone $\mathbf{4 0}$ would not be formed with these reagents. Unfortunately, the primary alcohol was partially oxidized to the aldehyde under these conditions, and 39 was obtained in lower yield than by ozonolysis.

Reaction of keto diol 39 with TsNHNH 2 gave 51% of tosylhydrazone 41, which was treated with 20 equiv of n-BuLi to provide 64% of beyer-15-ene-3 $\beta, 19$-diol (4). The structure of 4 was established by the identity of the ${ }^{1} \mathrm{H}$ NMR spectral data to those of the natural product ${ }^{6}$ and the similarity of the ${ }^{13} \mathrm{C}$ NMR spectral data to those of closely related beyer-15-enes. ${ }^{22-24}$ Diol 4 was prepared from 2 in 4 steps in 17\% overall yield.

In conclusion, we have established that quadruple oxidativefree-radical cyclization of $\mathbf{1}$ provides a practical route to 2, which has the tetracyclic skeleton of the beyerane diterpenes and showed that 2 can be elaborated to complete the first syntheses of (\pm)-i sosteviol (3) and beyer-15-ene-3 β,19-diol (4). This work further demonstrates the synthetic utility of stereospecific Mn (III)based oxidative free-radical polycyclizations for the preparation of synthetically useful fused and bridged polycyclic systems.

Experimental Section

General Methods. NMR spectra were recorded in CDCl_{3} at 300 and 400 MHz unless otherwise indicated. Chemical shifts are reported in δ, coupling constants are reported in Hz , and IR data are reported in cm^{-1}.

6-Methyl-6-hepten-2-yn-1-ol (7) was prepared by a modification of Negishi's procedure. ${ }^{7}$ Mg turnings ($21 \mathrm{~g}, 860 \mathrm{mmol}$) were stirred under N_{2} for 2 d in a three-neck 1 L round-bottom flask supplied with a mechanical stirrer and addition funnel. ${ }^{8 b}$ Freshly distilled ether (250 mL) was added, and the mixture was cooled to $0^{\circ} \mathrm{C}$. Methallyl chloride ($28 \mathrm{~mL}, 284 \mathrm{mmol}$) was slowly added to the reaction over 30 h . The resulting reaction, containing some gray precipitate, was warmed to room temperature during the addition. Stirring was continued for 2 h at room temperature, and then the precipitate was allowed to settle. The clear solution was transferred via cannula under N_{2} into another three-neck 1 L flask equipped with a condenser. The precipitate was washed with ether, and the clear solution was combined with the first portion of the methallylmagnesium chloride solution.

A solution of 2,3-dichloro-1-propene (5) ($15 \mathrm{~mL}, 163 \mathrm{mmol}$) in THF (250 mL) was slowly added to the solution of methallylmagnesium chloride. During the addition the reaction mixture began to reflux. After addition was complete, the reaction was stirred at mild reflux overnight. The reaction was cool ed to $0^{\circ} \mathrm{C}$ and quenched with 1 M HCl . The resulting mixture was separated, and the aqueous phase was extracted with ether. The combined organic extracts were dried (MgSO_{4}), and the solvent was partially evaporated giving a 4:1 mixture of 2-chloro-5-methyl-1,5-hexadiene (6) and 2,5-di-methyl-1,5-hexadiene. The ${ }^{1}$ H NMR spectral data for 6 are identical to those reported by Negishi. ${ }^{7}$

The above solution containing 6 was added to a solution of LDA, prepared from diisopropylamine ($36.5 \mathrm{~mL}, 279 \mathrm{mmol}$) and n-BuLi (2.5 M in hexane, $102 \mathrm{~mL}, 255 \mathrm{mmol}$) in THF (400 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$, warmed to room temperature, and stirred for another 1.5 h . A solution of paraformaldehyde ($4.2 \mathrm{~g}, 140 \mathrm{mmol}$) in THF (5 mL) was added via cannula. The resulting mixture was stirred for 30 min , quenched with 1 M HCl , and extracted

[^7]with ether. The combined organic extracts were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was partially removed giving 12.1 g of a 1:1 mixture of 7 and THF, which was carried on to the next step because of the volatility of 7 . The ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{7}$ are identical to those reported by Negishi. ${ }^{7}$

6-Methyl-2-(2-propenyl)-2E,6-heptadien-1-ol (9). Allylmagnesium bromide (1.0 M in ether, $122 \mathrm{~mL}, 122 \mathrm{mmol}$) was added dropwise to the above mixture of propargyl alcohol 4 and THF and Cul ($929 \mathrm{mg}, 4.9 \mathrm{mmol}$) in 100 mL of ether at $-10^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirred for 8 h . The resulting black solution was cooled to 0 ${ }^{\circ} \mathrm{C}$, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ether. The combined organic extracts were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent provided crude 9 which was purified by flash chromatography on silica gel (6:1 hexane/EtOAc) to afford 3.45 g of pure alcohol 9 followed by 3.0 g of 65% pure 9. The calculated yield of 9 is 20\% from 5: ${ }^{1} \mathrm{H}$ NMR 5.79 (ddt, 1, J = 17.0, 10.0, 6.4), 5.51 (br t, 1, J = 6.9), 5.06 (br d, 1, J = 17.0), 5.01 (br d, 1, J = 10.0), 4.72 (br s, 1), 4.69 (br s, 1), 4.02 (br s, 2), 2.87 (br d, 2, $\mathrm{J}=6.4$), 2.30-1.95 (m, 4), 1.75 (s, 3); ${ }^{13} \mathrm{C}$ NMR 145.3, 136.6, 135.8, 127.4, 115.4, 110.1, 66.9, 37.5, 32.5, 25.6, 22.4; IR (neat) 3332, 3075, 1649, 993, 912, 887.

1-Bromo-6-methyl-2-(2-propenyl)-2E,6-heptadiene (10). $E t_{3} \mathrm{~N}(5.05 \mathrm{~mL}, 36.2 \mathrm{mmol})$ was added dropwise to a mixture of alcohol $\mathbf{1 0}(3.0 \mathrm{~g}, 18.1 \mathrm{mmol})$ and $\mathrm{MsCl}(1.82 \mathrm{~mL}, 23.5 \mathrm{mmol})$ in 130 mL of THF at $-45^{\circ} \mathrm{C}$. The reaction was stirred for 45 min, warmed to $0^{\circ} \mathrm{C}$, and treated with a solution of $\mathrm{LiBr}(6.3$ $\mathrm{g}, 72.4 \mathrm{mmol}$) in 20 mL of THF, which was added via cannula. The resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, diluted with ice-cold water, and extracted with hexane. The combined organic extracts were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure giving 3.96 g of crude 10. Purification by flash chromatography on silica gel ($4: 1$ hexane/EtOAc) afforded $3.75 \mathrm{~g}(90 \%)$ of pure bromide 10: ${ }^{1} \mathrm{H}$ NMR 5.74 (ddt, 1, J = 16.6, 10.0, 6.6), 5.69 (br t, 1, J = 7.0), 5.09 (br d, 1, J = 16.6), 5.05 (br d, 1, J $=10.0$), 4.73 (br s, 1), 4.68 (br s, 1), 3.99 (br s, 2), 2.97 (d, 2, J $=6.6), 2.30-2.00(\mathrm{~m}, 4), 1.72(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 144.8, 134.9, 133.9, 132.4, 116.3, 110.4, 39.2, 37.0, 32.6, 26.2, 22.4; IR (neat) 3076, 1649, 994, 916, 889. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Br}: \mathrm{C}, 57.65$; H, 7.48. Found: C, 57.65; H, 7.42.

Ethyl 2,10-Dimethyl-3-oxo-6-(2-propenyl)-6E,10-undecadienoate (11). A solution of ethyl 2-methylacetoacetate (1.54 $\mathrm{mL}, 11.0 \mathrm{mmol}$) in 3 mL of THF was added dropwise at -78 ${ }^{\circ} \mathrm{C}$ to a solution of LDA, which was prepared from freshly distilled diisopropylamine ($3.2 \mathrm{~mL}, 24.2 \mathrm{mmol}$) and n-BuLi (2.5 M in hexane, $8.8 \mathrm{~mL}, 22.0 \mathrm{mmol}$) in 12 mL of THF at $-5^{\circ} \mathrm{C}$ and then cool ed to $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then warmed to $-50^{\circ} \mathrm{C}$. DMPU (2.82 $\mathrm{g}, 22.0 \mathrm{mmol}$) was added to the reaction followed by a solution of bromide 10 ($500 \mathrm{mg}, 2.2 \mathrm{mmol}$) in 5 mL of THF. The mixture was slowly warmed to room temperature, stirred for an additional 30 min , and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. The combined organic extracts were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent afforded crude 11, which was purified by flash chromatography on silica gel (12.5:1 hexane/ EtOAc) giving 507 mg (79\%) of β-keto ester 11: ${ }^{1}$ H NMR 5.73 (ddt, $1, \mathrm{~J}=16.5,10.0,6.4), 5.21(\mathrm{br} t, 1, \mathrm{~J}=6.7), 5.04(\mathrm{br} \mathrm{d}$, 1 , J $=16.5$), $5.00(\mathrm{br} \mathrm{d}, 1, \mathrm{~J}=10.0), 4.71(\mathrm{br} \mathrm{s}, 1), 4.67$ (br s, 1), $4.19(q, 2, \mathrm{~J}=7.1), 3.51(\mathrm{q}, 1, \mathrm{~J}=7.2), 2.78(\mathrm{br} \mathrm{d}, 2, \mathrm{~J}=$ 6.4), 2.66 (dt, 1, J = 17.3, 7.9), $2.60(\mathrm{dt}, 1, \mathrm{~J}=17.3,7.9), 2.28$ (br t, 2, J = 7.9), $2.13(\mathrm{br} \mathrm{dt}, 2, \mathrm{~J}=6.7,6.8), 2.02(b r t, 2, \mathrm{~J}=$ 6.8), $1.71(\mathrm{~s}, 3), 1.33(\mathrm{~d}, 3, \mathrm{~J}=7.2), 1.27(\mathrm{t}, 3, \mathrm{~J}=7.1) ;{ }^{13} \mathrm{C}$ NMR 205.3, 170.5, 145.4, 135.8, 135.3, 126.1, 115.4, 110.0, $61.2,52.8,40.1,37.7,35.0,30.6,25.9,22.4,14.0,12.7$; IR (neat) 3076, 1743, 1715, 1649, 889.

Oxidative Cyclization of 11. A solution of β-keto ester 11 ($419 \mathrm{mg}, 1.43 \mathrm{mmol}$) in 5 mL of EtOH was added to a degassed solution of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(786 \mathrm{mg}, 2.93 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2}(260 \mathrm{mg}, 1.43 \mathrm{mmol})$ in 9 mL of EtOH. The reaction was stirred at room temperature overnight. The resulting blue solution, containing some white precipitate, was diluted with
water and extracted with ether. The combined organic extracts were washed with saturated NaHCO_{3}, water, and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent afforded 415 mg of crude product. Flash chromatography on silica gel (50:1 hexane/EtOAc) afforded 291 mg of a mixture of 12, 16, and 17. Further purification of this mixture by flash chromatography on silica gel ($2: 1$ benzene/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 21 mg of pure 17, followed by 7.8 mg of a 3:1:2 mixture of $\mathbf{1 2}, \mathbf{1 6}$, and 17, and 131 mg of pure 12.

Oxidative cyclization of $\mathbf{1 1}(100 \mathrm{mg}, 0.34 \mathrm{mmol})$ under the same conditions gave 90 mg of crude product, which was purified by flash chromatography on silica gel (12.5:1 hexane/ EtOAc) affording 2.9 mg of 80% pure 16, fol lowed by 3.4 mg of pure 16, 1.5 mg of a $1: 2.3$ mixture of 12 and $\mathbf{1 6}, 6.6 \mathrm{mg}$ of a 4.5:2:1 mixture of $\mathbf{1 2}, \mathbf{1 6}$, and $\mathbf{1 7}, 13.3 \mathrm{mg}$ of a 5:1.5:1 mixture of $\mathbf{1 2}, \mathbf{1 6}$, and $17,11.6 \mathrm{mg}$ of a 7:1:1.2 mixture of $\mathbf{1 2}, \mathbf{1 6}$, and 17, 6.6 mg of a 19:1:4.2 mixture of $\mathbf{1 2}, \mathbf{1 6}$, and 17, and 13.6 mg of a 4.2:1 mixture of $\mathbf{1 2}$ and 17. The cal culated yields are 36 mg (37\%) of 12, 12.7 mg (13\%) of 16, and 7.4 mg (8\%) of 17.

Data for ethyl ($1 \alpha, 4 \mathrm{a} \beta, 7 \beta, 9 \mathrm{a} \beta$)-decahydro-1,7-dimethyl-6-methylene-3-oxo-4a,7-methano-4aH-benzocycloheptane-1-carboxylate (12): ${ }^{1} \mathrm{H}$ NMR 4.79 (br s, 1), 4.69 (br dd, $1, \mathrm{~J}=2.2$, 2.2), 4.25-4.06 (m, 2), 2.93 (ddd, 1, J = 14.4, 6.9, 6.9), 2.94$2.80(\mathrm{~m}, 1), 2.45(\mathrm{ddd}, 1, \mathrm{~J}=14.4,3.8,3.8), 2.09(\mathrm{dt}, 1, \mathrm{~J}=$ 17.1, 2.4), 1.88-1.13 (m, 8), 1.54 (dd, 1, J = 11.0, 2.2), 1.33 (s, 3), $1.27(\mathrm{t}, 3, \mathrm{~J}=7.1), 1.09(\mathrm{~s}, 3)$; ${ }^{33} \mathrm{C}$ NMR 209.5, 172.4, 158.0, 102.5, 61.0, 58.0, 55.5, 53.5, 44.1, 41.0, 40.6, 39.9, 38.7, 37.0, 23.6, 23.4, 21.3, 13.9; IR (neat) 3070, 1714, 1653, 874. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}: \mathrm{C}, 74.45 ; \mathrm{H}, 9.03$. Found: $\mathrm{C}, 74.44 ; \mathrm{H}$, 8.85 .

Data for ethyl 1-methyl-5-(4-methyl-4-pentenylidene)-8-oxo-2-cyclooctene-1-carboxylate (16): ${ }^{1}$ H NMR 5.76 (d, 1, J = 11.0), 5.66 (ddd, 1, J = 11.0, 9.0, 8.4), 5.21 (br t, 1, J = 7.1), 4.73 (br $\mathrm{s}, 1), 4.69$ (br s, 1), 4.27-4.09 (m, 2), 2.76 (dd, 1, J = 13.7, 8.4), 2.71-2.39 (m, 4), 2.38 (dd, 1, J $=13.7,9.0$), 2.23-2.00 (m, 4), 1.73 (s, 3), 1.47 (s, 3), 1.24 (t, 3, J $=7.2$); ${ }^{13} \mathrm{C}$ NMR $211.2,171.5,145.3,134.6,129.0,128.5,125.6,110.1,61.7,61.5$, 39.3, 38.1, 37.8, 28.3, 26.0, 22.5, 21.7, 14.0; UV (EtOH) $\lambda_{\max }$ ($\epsilon) 199 \mathrm{~nm}(14100)$.

Data for ethyl 1-methyl-5-(4-methyl-4-pentenylidene)-8-oxo-3-cyclooctene-1-carboxylate (17): ${ }^{1}$ H NMR 6.11 (d, 1, J $=10.5$), 5.65 (ddd, 1, J = 10.5, 9.8, 7.0), 5.39 (br t, 1, J = 6.4), 4.71 (br $\mathrm{s}, 1$), 4.66 (br s, 1), 4.26-4.08 (m, 2), 3.07 (dd, 1, J = 13.7, 9.8), 2.72 (ddd, $1, \mathrm{~J}=13.7,13.5,4.9$), $2.54-2.30(\mathrm{~m}, 3), 2.25$ (dd, 1, J = 13.7, 7.0), 2.14-1.97 (m, 4), 1.7 (s, 3), 1.32 (s, 3), 1.24 (t, 3, J = 7.1); ${ }^{13} \mathrm{C}$ NMR 208.1, 172.9, 145.2, 135.6, 132.4, 129.6, 126.0, 110.1, 62.1, 61.3, 40.8, 37.1, 35.2, 32.0, 26.7, 22.4, 18.6, 14.0; IR (neat) 3074, 1714, 1650; UV (EtOH) $\lambda_{\max }(\epsilon) 222$ (5500), 199 (13 000).

Ethyl 8-Methyl-4-(2-propenyl)-4E,8-nonadienoate (18). A solution of LDA prepared from diisopropylamine (2.5 mL , 19.1 mmol) and n -BuLi (2.5 M in hexane, $7 \mathrm{~mL}, 17.4 \mathrm{mmol}$) in 10 mL of THF at $-5{ }^{\circ} \mathrm{C}$ was slowly added to a stirred suspension of EtOAc ($1.7 \mathrm{~mL}, 17.4 \mathrm{mmol}$) and Cul $(6.7 \mathrm{~g}, 34.8$ mmol) in 27 mL of THF at $-110^{\circ} \mathrm{C}$. After the addition was complete, the mixture was warmed to $-30^{\circ} \mathrm{C}$ and a solution of bromide $\mathbf{1 0}(2.0 \mathrm{~g}, 8.7 \mathrm{mmol})$ in 7 mL of THF was added dropwise. The reaction was stirred at $-30^{\circ} \mathrm{C}$ for 1 h and then poured into 250 mL of water. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the resulting mixture, and it was extracted with hexane. The combined organic extracts were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure affording 189 mg (83%) of 90% pure 18 that was used for the next step. An analytical sample was prepared by flash chromatography on silica gel (49:1 hexane/EtOAc): ${ }^{1} \mathrm{H}$ NMR 5.73 (ddt, 1, J = 16.5, 10.0, 6.4), 5.24 (br t, 1, J = 6.8), 5.04 (br
 $\mathrm{s}, 1), 4.11(\mathrm{q}, 2, \mathrm{~J}=7.1), 2.79(\mathrm{~d}, 2, \mathrm{~J}=6.4), 2.44-2.26(\mathrm{~m}, 4)$, 2.20-1.98(m, 4), $1.71(\mathrm{~s}, 3), 1.25(\mathrm{t}, 3, \mathrm{~J}=7.1) ;{ }^{13} \mathrm{C}$ NMR 173.3, $145.3,135.8,135.2,126.0,115.3,110.0,60.1,37.7,34.8,33.1$, 31.9, 25.9, 22.4, 14.2; IR (neat) 3077, 1737, 913, 888. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$: C, 76.22; $\mathrm{H}, 10.24$. Found: C, 75.82; H, 10.26.

8-Methyl-4-(2-propenyl)-4E,8-nonadien-1-ol (19). LAH $(339 \mathrm{mg}, 8.9 \mathrm{mmol})$ was added to a solution of crude $18(2.1 \mathrm{~g}$, 8.9 mmol) in 75 mL of ether at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed to room temperature and stirred overnight. The reaction was cooled to $0^{\circ} \mathrm{C}$, and 0.4 mL of water was added, followed by 0.4 mL of 15% aqueous NaOH and 1.2 mL of water. Filtration of the resulting suspension afforded 1.58 g (92\%) of 19: ${ }^{1}$ H NMR 5.74 (ddt, 1, J = 16.5, 10.0, 6.4), 5.25 (br t, 1, J $=6.7$), 5.04 (br d, 1, J = 16.5), 4.99 (br d, 1, J = 10.0), 4.71 (br $\mathrm{s}, 1), 4.68(\mathrm{br} \mathrm{s}, 1), 3.62(\mathrm{t}, 2, \mathrm{~J}=6.4), 2.79(\mathrm{~d}, 2, \mathrm{~J}=6.4)$, 2.22-1.92 (m, 6), 1.74-1.54 (m, 2), $1.72(\mathrm{~s}, 3)$; ${ }^{13} \mathrm{C}$ NMR 145.5, 136.4, 136.1, 125.8, 115.2, 109.9, 62.7, 37.8, 34.7, 33.1, 30.8, 25.9, 22.4; IR (neat) 3332, 3075, 1649, 1638, 993, 911, 887. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 80.35$; $\mathrm{H}, 11.41$. F ound: C, 80.26; H, 11.33.

8-Methyl-4-(2-propenyl)-4E,8-nonadien-1-al (20). PDC ($19.0 \mathrm{~g}, 50.5 \mathrm{mmol}$) was added to a solution of al cohol 19 (90% pure) ($2.45 \mathrm{~g}, 12.6 \mathrm{mmol}$) in 250 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting mixture was stirred overnight. The reaction mixture was filtered through Celite and the solvent was removed under reduced pressure affording 1.97 g (80%) of crude 20. Purification by flash chromatography on silica gel (50:1 hexane/EtOAc) gave $1.51 \mathrm{~g}(70 \%)$ of pure 20: ${ }^{1} \mathrm{H}$ NMR $9.74(\mathrm{t}, 1, \mathrm{~J}=1.8)$, 5.73 (ddt, 1, J $=16.5,10.0,6.4$), 5.23 (br t, 1, J $=6.8$), 5.04 (br $\mathrm{d}, 1$, J $=16.5$), $5.01(\mathrm{br} \mathrm{d}, 1, \mathrm{~J}=10.0), 4.71(\mathrm{br} \mathrm{s}, 1), 4.67(\mathrm{br}$ $\mathrm{s}, 1), 2.80(\mathrm{~d}, 2, \mathrm{~J}=6.4), 2.52(\mathrm{br} \mathrm{t}, 2, \mathrm{~J}=7.9), 2.33(\mathrm{brt}, 2, \mathrm{~J}$ $=7.9$), 2.20-1.90 (m, 4), $1.71(\mathrm{~s}, 3)$; ${ }^{13} \mathrm{C}$ NMR 202.3, 145.2, 135.6, 134.8, 126.3, 115.5, 110.0, 42.0, 37.7, 34.9, 29.1, 25.8, 22.3; IR (neat) 3076, 2718, 1726, 1648, 1637, 994, 912, 888. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}$: C, 81.20; H, 10.48. Found: C, 81.39; H, 10.49.
Ethyl 2,10-Dimethyl-6-(2-propenyl)-2E,6E,10-undecatrienoate (21). A mixture of aldehyde $\mathbf{2 0}$ ($2.9 \mathrm{~g}, 15.1 \mathrm{mmol}$) and (carbethoxyethylidene)triphenyl phosphorane ($10.97 \mathrm{~g}, 30.3$ mmol) in toluene (200 mL) was heated at $110{ }^{\circ} \mathrm{C}$ for 2 h . Toluene was removed under reduced pressure, and the crude product was purified by flash chromatography on silica gel (12.5:1 hexane/EtOAc) giving 3.8 g (91\%) of pure 21: ${ }^{1} \mathrm{H}$ NMR 6.73 (dt, 1, J = 1.4, 7.3), 5.73 (ddt, 1, J = 16.6, 10.0, 6.4), 5.24 (br t, 1, J = 7.0), 5.04 (br d, 1, J = 16.6), $5.00(b r d, 1, \mathrm{~J}=$ 10.0), 4.71 (br s, 1), 4.67 (br s, 1), $4.18(q, 2, J=7.1), 2.80(d$, $2, \mathrm{~J}=6.4), 2.26(\mathrm{dt}, 2, \mathrm{~J}=7.3,7.3), 2.20-1.97(\mathrm{~m}, 6), 1.82(\mathrm{~s}$, 3), 1.71 ($\mathrm{s}, 3$), 1.28 (t, 3, J = 7.1); ${ }^{13} \mathrm{C}$ NMR 168.0, 145.3, 141.7, 136.0, 135.8, 127.7, 126.1, 115.2, 110.0, 60.2, 37.8, 35.4, 34.8, 27.3, 25.9, 22.3, 14.2, 12.3; IR (neat) 3076, 1711, 1649, 911, 888.

2,10-Dimethyl-6-(2-propenyl)-2E ,6E,10-undecatrien-1al (26E) and 2,10-dimethyl-6-(2-propenyl)-2E,6Z,10-un-decatrien-1-al (26Z). A solution of 1,1,3-triethoxy-2methylbutane ${ }^{16 \mathrm{~b}}(6.33 \mathrm{~g}, 31.0 \mathrm{mmol})$, alcohol $9(5.0 \mathrm{~g}, 30.1$ mmol), and o-nitrobenzoic acid ($105 \mathrm{mg}, 0.63 \mathrm{mmol}$) in toluene (31 mL) was refluxed for 18 h . Ethanol was then distilled from the mixture, and another portion of o-nitrobenzoic acid (110 $\mathrm{mg}, 0.66 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 11 h , ethanol was removed as before, and more onitrobenzoic acid was added ($100 \mathrm{mg}, 0.60 \mathrm{mmol}$). This process was repeated 4 more times, and almost no more ethanol distilled over, indicating the completion of reaction. The dark brown mixture was diluted with ether (100 mL) and washed with saturated NaHCO_{3} solution and water. The aqueous layer was further extracted twice with ether, and the combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed giving 9.3 g of crude product. Flash chromatography on silica gel ($50: 1$ hexane/EtOAc) afforded 1.3 g (18\%) of a $2: 1$ mixture of 26E and $26 Z$.

Data for 26E: ${ }^{1} \mathrm{H}$ NMR 9.38 ($\mathrm{s}, 1$), 6.47 (ddd, 1, J = 7.0, 7.0, 1.2), 5.77 (ddt, $1, \mathrm{~J}=16.6,10.0,6.3$), 5.25 (br t, 1, J $=$ 6.6), 5.05 (br d, 1, J = 16.6), $5.00(\mathrm{br} \mathrm{d}, 1, \mathrm{~J}=10.0), 4.71$ (br $\mathrm{s}, 1), 4.67(\mathrm{br} \mathrm{s}, 1), 2.81(\mathrm{br} \mathrm{d}, 2, \mathrm{~J}=6.3), 2.51-2.35(\mathrm{~m}, 2)$, 2.28-1.95 (m, 6), $1.74(\mathrm{~s}, 3), 1.72(\mathrm{~s}, 3)$.

Partial data for 26Z: ${ }^{13}$ H NMR 9.39 (s, 1), 6.50 (ddt, 1, J = $16.6,10.0,6.8), 2.76$ (br d, 2, J $=6.8,1.0$).

2,10-Dimethyl-6-(2-propenyl)-2E,6E,10-undecatrien-1ol (22). LAH ($2.0 \mathrm{~g}, 52.6 \mathrm{mmol}$) was added to a solution of ester $21(3.8 \mathrm{~g}, 13.8 \mathrm{mmol})$ in 150 mL of ether at $0^{\circ} \mathrm{C}$. The
reaction was stirred for 8 h and quenched with water (2 mL), followed by 15% aqueous $\mathrm{NaOH}(2 \mathrm{~mL})$ and another portion of water (6 mL). Filtration and further evaporation of the solvent gave $3.15 \mathrm{~g}(98 \%)$ of 22: ${ }^{1} \mathrm{H}$ NMR 5.73 (ddt, 1, J = $16.6,10.0,6.4), 5.38$ (dt, 1, J = 1.0, 6.8), $5.22(b r t, 1, \mathrm{~J}=6.7$), 5.03 (br d, 1, J = 16.6), $4.98(b r d, 1, \mathrm{~J}=10.0), 4.71(\mathrm{br} \mathrm{s}, 1)$, 4.68 (br s, 1), 3.95 (br s, 2), 2.79 (br d, 2, J = 6.4), 2.23-1.95 ($\mathrm{m}, 8$), $1.71(\mathrm{~s}, 3), 1.65(\mathrm{~s}, 3), 1.46$ (br s, 1, OH); ${ }^{13} \mathrm{C}$ NMR 145.4, 136.4, 136.1, 134.6, 125.7, 125.5, 115.0, 109.8, 68.6, 37.8, 36.4, 34.8, 26.1, 25.9, 22.3, 13.5; IR (neat) 3323, 3076, 1648, 1637, 995, 911, 887. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 81.99$; $\mathrm{H}, 11.18$. Found: C, 81.68; H, 10.62.

1-Bromo-2,10-dimethyl-6-(2-propenyl)-2E,6E,10-undecatriene (23). $E t_{3} \mathrm{~N}(0.92 \mathrm{~mL}, 6.6 \mathrm{mmol})$ was added dropwise to a mixture of alcohol $22(780 \mathrm{mg}, 3.3 \mathrm{mmol})$ and $\mathrm{MsCl}(0.4$ $\mathrm{mL}, 5.0 \mathrm{mmol}$) in 25 mL of THF at $-45^{\circ} \mathrm{C}$. The reaction was stirred for 1 h and then warmed to $0{ }^{\circ} \mathrm{C}$ at which time a solution of $\mathrm{LiBr}(1.15 \mathrm{~g}, 13.2 \mathrm{mmol})$ in 5 mL of THF was added via cannula. The resulting mixture was stirred for 2 h at 0 ${ }^{\circ} \mathrm{C}$ and then diluted with ice-cold water and extracted with hexane. The combined organic extracts were washed with saturated NaHCO_{3}, water, and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure giving 1.00 g of crude product. Purification by flash chromatography on silica gel (100:1 hexane/EtOAc followed by 50:1 hexane/EtOAc) afforded 705 mg (72\%) of pure bromide 23: ${ }^{1}$ H NMR 5.73 (ddt, $1, \mathrm{~J}=16.6,10.0,6.4), 5.57(b r t, 1, \mathrm{~J}=6.3), 5.21(b r t, 1, \mathrm{~J}=$ 6.8), 5.03 (br d, 1, J = 16.6), 4.98 (br d, 1, J $=10.0$), 4.71 (br $\mathrm{s}, 1$), 4.68 (br s, 1), 3.96 (br s, 2), 2.78 (br d, 2, J = 6.4), 2.21$1.98(\mathrm{~m}, 8), 1.74(\mathrm{~s}, 3), 1.72(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 145.5, 136.1, 136.0, $131.9,131.1,126.0,115.1,109.9,41.7,37.9,36.0,34.8,26.8$, 26.0, 22.4, 14.6; IR (neat) 3075, 1649, 1636, 993, 912, 888.

Ethyl 2,6,14-Trimethyl-3-oxo-10-(2-propenyl)-6E,10E, 14-pentadecatrienoate (1). Ethyl 2-methylacetoacetate (5.26 $\mathrm{g}, 36.5 \mathrm{mmol}$) was added dropwise to a sol ution of NaH (1.53 $\mathrm{g}, 38.3 \mathrm{mmol}$) and HMPA ($3.81 \mathrm{~mL}, 21.9 \mathrm{mmol}$) in THF (240 mL) at $0^{\circ} \mathrm{C}$. The reaction was stirred for 1 h and then treated with n-BuLi ($15.3 \mathrm{~mL}, 38.3 \mathrm{mmol}$ of 2.5 M in hexane). The resulting mixture was stirred for 1 h , and a solution of bromide $23(2.71 \mathrm{~g}, 9.1 \mathrm{mmol})$ in THF (10 mL) was transferred to the reaction via cannula. The reaction mixture was stirred for 2 h, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography of the residue on silica gel (50:1 hexane/EtOAc) gave $2.74 \mathrm{~g}(83 \%)$ of pure 1: ${ }^{1} \mathrm{H}$ NMR 5.73 (ddt, $1, \mathrm{~J}=16.6,10.0$, 6.4), 5.20 (br t, $1, \mathrm{~J}=6.8$), 5.11 (dt, 1, J = 1.4, 6.8), 5.03 (br d, $1, \mathrm{~J}=16.6), 4.98$ (br d, 1, J = 10.0), 4.71 (br s, 1), 4.68 (br s, 1), $4.19(\mathrm{q}, 2, \mathrm{~J}=7.1), 3.52(\mathrm{q}, 1, \mathrm{~J}=7.1), 2.78(\mathrm{br} \mathrm{d}, 2, \mathrm{~J}=$ $6.4), 2.67$ (dt, 1, J = 17.1, 7.8), $2.58(\mathrm{dt}, 1$, J $=17.1,7.4$), 2.25 (br t, 2, J = 7.8), 2.20-1.98 (m, 8), 1.72 (s, 3), $1.59(\mathrm{~s}, 3), 1.33$ $(\mathrm{d}, 3, \mathrm{~J}=7.1), 1.27(\mathrm{t}, 3, \mathrm{~J}=7.1) ;{ }^{13} \mathrm{C}$ NMR 205.5, 170.5, 145.6, $136.6,136.3,133.3,125.5,125.0,115.0,109.9,61.2,52.9,40.1$, 37.9, 36.8, 34.9, 33.2, 26.6, 26.0, 22.4, 16.0, 14.1, 12.7; IR (neat) 3075, 1745, 1716, 1650, 1448, 910, 887.

Ethyl ($4 \alpha, 8 \beta, 13 \beta$)-13-Methyl-3-oxo-16-kauren-18-oate (2). A solution of β-keto ester $\mathbf{1}(2.74 \mathrm{~g}, 7.6 \mathrm{mmol})$ in MeOH (10 mL) was added to a degassed solution of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(4.08 \mathrm{~g}, 15.2 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAC})_{2}(1.38 \mathrm{~g}, 7.6 \mathrm{mmol})$ in MeOH $(160 \mathrm{~mL})$, and the resulting mixture was stirred for 2.5 h at room temperature. The reaction was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated NaHCO_{3} solution, water, and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent afforded 2.59 g of crude product. Flash chromatography on silica gel (impregnated with $20 \% \mathrm{AgNO}_{3}$) ($24: 1$ hexane/EtOAc) gave 940 mg (35%) of pure $\mathbf{2}$, followed $10 \mathrm{mg}(0.4 \%)$ of the epimer of 2 at $\mathrm{C}_{4}, 50 \mathrm{mg}$ of 80% pure 32 (1.5\%), 64 mg (2\%) of $33,57 \mathrm{mg}$ (1\%) of 50% pure 33 , and 397 mg of unidentified products with 2-propenyl and 4-methyl-4-pentenyl side chains, and polymeric material.

Data for 2: mp 87.0-88.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR 4.73 (br s, 1), 4.63 (br s, 1), 4.23-4.04 (m, 2), 2.94 (ddd, 1, J = 14.8, 14.8, 6.6), 2.81 (dd, 1, J = 17.0, 2.4), 2.36 (ddd, 1, J = 14.8, 4.8, 2.4), 2.05 (ddd, $1, \mathrm{~J}=13.2,6.6,2.4$), 1.97 (dt, 1, J = 17.0, 2.4), 1.90-
$1.74(\mathrm{~m}, 2), 1.62-1.05(\mathrm{~m}, 11), 1.35(\mathrm{~s}, 3), 1.26(\mathrm{t}, 3, \mathrm{~J}=7.1)$, 1.06 (s, 3), 1.04 (s, 3); ${ }^{13} \mathrm{C}$ NMR 209.0, 173.7, 159.7, 101.4, 61.0, 58.5, 57.6, 57.0, 54.8, 43.9, 42.1, 41.2, 41.0, 40.6, 40.2, 37.7, 36.6, 23.7, 22.3, 21.1, 20.9, 13.9, 13.2; IR (neat) 1714, 1652. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}$: $\mathrm{C}, 77.05 ; \mathrm{H}, 9.56$. Found: $\mathrm{C}, 76.66$; H, 9.22.

Data for the epimer of $\mathbf{2}$ at $\mathrm{C}_{4}:{ }^{1} \mathrm{H}$ NMR 4.74 (br s, 1), 4.64 (br s, 1), 4.26-4.10 (m, 2), 2.80 (br d, 1, J = 15.6), 2.57 (ddd, 1 , J = 16.8, 12.2, 7.0), 2.44 (ddd, 1, J = 16.8, 6.4, 3.1), 2.30$0.92(\mathrm{~m}, 15), 1.34(\mathrm{~s}, 3), 1.25(\mathrm{t}, 3, \mathrm{~J}=7.0), 1.07(\mathrm{~s}, 3), 1.05(\mathrm{~s}$, 3); ${ }^{13} \mathrm{C}$ NMR 211.0, 173.3, 159.6, 101.6, 61.2, 61.0, 57.1, 55.1, 51.5, 43.9, 42.2, 41.2 (2 C), 39.8, 37.7, 36.3, 34.5, 23.8, 22.6, 20.7, 17.0, 14.7, 14.1.

Partial data for 32 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 5.76 (d, 1, J = 11.0), 5.66 (ddd, 1, J = 11.0, 9.3, 9.3).

Data for 33: ${ }^{1} \mathrm{H}$ NMR 6.42 (d, 1, J $=11.0$), 5.47 (ddd, 1, J $=11.0,8.8,8.8), 5.24(\mathrm{br} \mathrm{t}, 1, \mathrm{~J}=7.4), 4.71(\mathrm{br} \mathrm{s}, 1), 4.67(\mathrm{br}$ $\mathrm{s}, 1$), 4.25-4.05 (m, 2), 2.95 (ddd, 1, J $=14.5,14.5,6.4$), 2.850.85 (m, 13), 2.37 (ddd, 1, J = 14.5, 4.7, 2.4), 1.71 (s, 3), 1.32 $(\mathrm{s}, 3), 1.25(\mathrm{t}, 3, \mathrm{~J}=7.1), 1.07(\mathrm{~s}, 3)$.

Ethyl ($4 \alpha, 8 \beta, 13 \beta$)-3-H ydroxy-13-methyl-16-kauren-18oate (34). Sodium borohydride ($22.0 \mathrm{mg}, 5.8 \mathrm{mmol}$) was added to a solution of $2(51.5 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{EtOH}(1 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 1 h . The reaction was warmed to room temperature, quenched with 1 M HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent afforded 50.5 mg (99\%) of 34: mp 99.0$99.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR 4.71 (br s, 1), 4.61 (br s, 1), 4.21-4.05 (m, 2), 3.45 (d, 1, J = 12.0, OH), 3.06 (ddd, 1, J = 12.0, 12.0, 4.5), 2.75 (br d, 1, J = 16.7), 2.09-0.93 (m, 16), 1.92 (br d, 1, J = 16.7), 1.40 (s, 3), 1.30 (t, 3, J = 7.1), 1.03 (s, 3), $0.79(\mathrm{~s}, 3)$; ${ }^{13} \mathrm{C}$ NMR 178.0, 160.0, 101.2, 78.4, 60.2, 57.1, 56.8, 55.4, 48.9, 43.9, 42.1, 41.3, 41.0, 41.0, 38.7, 37.7, 28.1, 23.8, 23.8, 21.8, 20.8, 14.1, 13.4; IR (neat) 3537, 3068, 1699, 1653, 872. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{3}$: C, 76.62; $\mathrm{H}, 10.07$. Found: C, 76.43; H, 9.82.

Ethyl ($4 \alpha, 8 \beta, 13 \beta$)-3-Hydroxy-13-methyl-16-oxo-17-nor-kauran-18-oate (35). $\mathrm{OsO}_{4}\left(25 \mu \mathrm{~L}, 1.9 \times 10^{-6} \mathrm{mmol}\right.$ of 2.5% solution in tert-butyl al cohol) was added to a mixture of 34 ($50.3 \mathrm{mg}, 0.14 \mathrm{mmol}$), NaHCO_{3} ($163 \mathrm{mg}, 1.94 \mathrm{mmol}$), and $\mathrm{NaIO}_{4}(249 \mathrm{mg}, 1.16 \mathrm{mmol})$ in tert-butyl alcohol $(3.6 \mathrm{~mL})$ and water (0.72 mL) at room temperature. The reaction was stirred for 4 h , and another portion of $\mathrm{OsO}_{4}(25 \mu \mathrm{~L})$ was added. The resulting mixture was stirred overnight and then quenched with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$. After being stirred for 30 min , the mixture was extracted with ether. The combined organic extracts were washed with water and brine and dried (MgSO_{4}). Evaporation of the sol vent afforded 47 mg (93\%) of $35{ }^{1}{ }^{1} \mathrm{H}$ NMR 4.14 (q, 2, $\mathrm{J}=7.1$), 3.44 ($\mathrm{d}, 1, \mathrm{~J}=12.1, \mathrm{OH}$), 3.08 (ddd, $1, \mathrm{~J}=12.1,12.1$, $4.2), 2.60(d d, 1, \mathrm{~J}=18.5,3.8), 2.00(d d d d, 1, \mathrm{~J}=13.5,12.1$, $11.2,3.4), 1.93-1.00(\mathrm{~m}, 15), 1.81(\mathrm{~d}, 1, \mathrm{~J}=18.5), 1.42(\mathrm{~s}, 3)$, 1.28 (t, 3, J = 7.1), 0.98 ($\mathrm{s}, 3$), 0.74 ($\mathrm{s}, 3$); ${ }^{13} \mathrm{C}$ NMR 222.1, 177.7, 78.2, 60.4, 56.6, 54.6, 54.1, 48.9, 48.8, 48.3, 41.4, 39.3, 38.6, $37.7,37.3,28.0,23.8,21.7,20.5,19.8,14.0,13.6$; IR $\left(\mathrm{CCl}_{4}\right) 3546$, 1740, 1704.

Ethyl (4 $\alpha, 8,13 \beta$)-13-Methyl-16-oxo-17-norkaur-3-en-18oate (36). A mixture of 35 ($18.4 \mathrm{mg}, 0.051 \mathrm{mmol}$), PPh_{3} (53.3 $\mathrm{mg}, 0.2 \mathrm{mmol}$), and DEAD ($32 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in 1.0 mL of THF was heated at reflux overnight. Evaporation of the solvent and partial purification of the reaction mixture by flash chromatography on silica gel (10:1 hexane/EtOAc) afforded 23.4 mg of 50% pure 36 that was carried on to the next step without purification: ${ }^{1} \mathrm{H}$ NMR 5.61 (br s, 2), 4.09 (q, 2, J = 7.1), 2.59 (dd, 1, J = 18.7, 3.8), 2.04 (br d, 1, J = 17.0), 1.97 (br d, 1, J = 12.0), $1.81(\mathrm{~d}, 1, \mathrm{~J}=18.7), 1.71-1.20(\mathrm{~m}, 12)$, $1.30(\mathrm{~s}, 3), 1.23(\mathrm{t}, 3, \mathrm{~J}=7.1), 0.99(\mathrm{~s}, 3), 0.81(\mathrm{~s}, 3)$.

Ethyl ($4 \alpha, 8 \beta, 13 \beta$)-13-Methyl-16-oxo-17-norkauran-18oate (37). The 50% pure 36 (23.4 mg , approximately 0.03 mmol) and 5 mg of $5 \% \mathrm{Pd}$ on carbon in EtOH (3 mL) was stirred under 1 atm of H_{2} overnight. Filtration and removal of the solvent gave 17.2 mg of crude 37. Flash chromatography on silica gel ($50: 1$ hexane/EtOAc) afforded 14 mg (79% for two steps) of pure 37: ${ }^{1} \mathrm{H}$ NMR 4.10 (q, 2, J $=7.1$), 2.64 (dd, 1, J $=18.7,3.7), 2.18(b r d, 1, \mathrm{~J}=13.5), 1.90$ (dddd, $1, \mathrm{~J}=14.5$, $3.8,3.8,3.8), 1.86-1.10(\mathrm{~m}, 14), 1.80(\mathrm{~d}, 1, \mathrm{~J}=18.7), 1.26(\mathrm{t}$,
$3, \mathrm{~J}=7.1$), $1.19(\mathrm{~s}, 3), 1.00(\mathrm{ddd}, 1, \mathrm{~J}=13.5,13.5,4.2), 0.98$ (s, 3), 0.90 (ddd, $1, \mathrm{~J}=13.2,13.2,4.1$), 0.72 (s, 3); ${ }^{13} \mathrm{C}$ NMR $222.5,177.3,63.4,60.0,57.0,54.7,54.3,48.7,48.4,43.7,41.5$, 39.8, 38.0, 37.9, 37.3, 28.9, 21.7, 20.3, 19.8, 18.9, 14.1, 13.4; IR (CCl_{4}) 1740, 1722.
($4 \alpha, 8 \beta, 13 \beta$)-13-Methyl-16-oxo-17-norkauran-18-oic Acid (Isosteviol, 3). LAH ($10 \mathrm{mg}, 0.26 \mathrm{mmol}$) was added to a solution of $37(14 \mathrm{mg}, 0.040 \mathrm{mmol})$ in ether (2 mL) at $0^{\circ} \mathrm{C}$. The reaction was stirred overnight at room temperature, cooled to $0{ }^{\circ} \mathrm{C}$, and quenched with water ($10 \mu \mathrm{~L}$), followed by 15% aqueous $\mathrm{NaOH}(10 \mu \mathrm{~L})$, and another portion of water ($30 \mu \mathrm{~L}$). The white precipitate was filtered off, and the solvent was evaporated to provide 12 mg (98%) of ($4 \alpha, 8 \beta, 13 \beta$)-13-methyl-17-norkaurane-16,18-diol: ${ }^{1} \mathrm{H}$ NMR 3.85 (dd, 1, J = 10.7, 4.4), 3.76 (d, 1, J = 11.0), 3.41 (d, 1, J = 11.0), 1.83 (ddd, 1, J = $14.5,4.6,3.1), 1.80-0.80(\mathrm{~m}, 16), 1.67$ (dd, 1, J = 14.1, 10.7), 1.49 (dt, 1, J = 12.8, 3.3), 1.29 (dd, 1, J = 11.5, 2.9), 0.96 (s, 3), 0.90 ($\mathrm{s}, 3$), 0.89 (s, 3); ${ }^{13} \mathrm{C}$ NMR 80.6, 65.6, 56.9, 56.6, 55.4, 42.9, 42.0, 42.0, 39.6, 38.5, 37.6, 35.5, 33.6, 29.7, 27.1, 24.9, 20.2, 18.0, 15.4, 12.0; IR (CCI ${ }_{4}$) 3725, 3625.

The above diol ($10 \mathrm{mg}, 0.033 \mathrm{mmol}$) was dissolved in acetone (1 mL), and freshly prepared J ones reagent (0.3 mL) was added at $5^{\circ} \mathrm{C}$. The reaction was stirred for 5 h at room temperature and quenched with 2 -propanol. The mixture was diluted with water and extracted with ether. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent gave 11 mg of crude isosteviol. Purification by flash chromatography on silica gel (3:1 hexane/EtOAc) provided 9 mg (72%) of pure 3: $\mathrm{mp} 246.0-246.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR 2.64 (dd, 1, J = 18.6, 3.7), 2.16 (br d, 1, J = 13.4), 1.93-1.12 (m, 14), $1.82(d, 1, \mathrm{~J}=18.6), 1.55(\mathrm{dd}, 1, \mathrm{~J}=11.5,2.6), 1.25(\mathrm{~s}, 3)$, 1.03 (ddd, 1, J $=13.5,13.5,4.2$), 0.98 (s, 3), 0.91 (ddd, 1, J = 13.4, 13.4, 4.2), 0.78 (s, 3); ${ }^{13}$ C NMR 222.7, 183.8, 57.0, 54.7, 54.3, 48.7, 48.4, 43.7, 41.4, 39.7, 39.5, 38.2, 37.6, 37.3, 28.9, $21.6,20.3,19.8,18.8,13.3$; IR $\left(\mathrm{CCl}_{4}\right) 1739,1695$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR spectral data for $\mathbf{3}$ are identical to those of isosteviol obtained by acidic hydrolysis of stevioside. ${ }^{5}$
($4 \alpha, 8 \beta, 13 \beta$)-13-Methyl-16-methylene-17-norkaurane-3,18-diol (38). LAH ($26 \mathrm{mg}, 0.68 \mathrm{mmol}$) was added to a solution of $2(32 \mathrm{mg}, 0.089 \mathrm{mmol})$ in ether (2 mL) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 2 h at room temperature. The reaction was cool ed to $0^{\circ} \mathrm{C}$ and quenched by the sequential addition of water ($26 \mu \mathrm{~L}$), followed by 15% aqueous NaOH and another portion of water ($78 \mu \mathrm{~L}$). Filtration and evaporation of the solvent gave 28 mg (99\%) of 38: mp 177.0-178 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR 4.70 (br s, 1), 4.60 (br s, 1), 4.20 (d, 1, J = 10.8), 3.41 (dd, 1, J = 11.7, 4.6), 3.29 (d, 1, J = 10.8), 2.75 (br d, 1, J = 17.0), 1.87 (dt, 1, J = 17.0, 2.4), 1.83-0.86 (m, 16), 1.23 (s, 3), 1.02 (s, 3), 0.87 (s, 3); ${ }^{13} \mathrm{C}$ NMR 160.1, 101.2, 80.7, 64.4, 57.3, 56.2, 56.0, 43.8, 42.7, 42.3, 41.3, 41.03, 40.96, 37.6, 37.1, 27.5, 23.8, 22.6, 20.6, 20.0, 15.7; IR $\left(\mathrm{CCl}_{4}\right) 3632,3549,1654,876$.
($4 \alpha, 8 \beta, 13 \beta$)-3,18-Di hydroxy-3-methyl-17-norkauran-16one (39). A solution of $38(32 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was cool ed to $-78{ }^{\circ} \mathrm{C}$, and O_{3} was bubbled through for 10 min . When the reaction turned blue, oxygen was bubbled through for 10 min and dimethyl sulfide (1.5 mL) was added. The reaction was warmed to room temperature and the sol vent was removed affording 42 mg of crude 39. Flash chromatography on silica gel (10:4:1 hexane/EtOAc/MeOH) afforded 17 $\mathrm{mg}(53 \%)$ of 39 , followed by 5.0 mg (15\%) of 40.

Data for 39: ${ }^{1} \mathrm{H}$ NMR 4.18 ($\mathrm{d}, 1, \mathrm{~J}=11.0$), 3.44 (dd, $1, \mathrm{~J}=$ $11.6,3.4), 3.30(d, 1, \mathrm{~J}=11.0), 2.62(\mathrm{dd}, 1, \mathrm{~J}=18.7,3.7), 1.86-$ $0.95(\mathrm{~m}, 16), 1.76(\mathrm{~d}, 1, \mathrm{~J}=18.7), 1.25(\mathrm{~s}, 3), 0.98(\mathrm{~s}, 3), 0.83$ (s, 3); ${ }^{13}$ C NMR 222.2, 80.7, 64.3, 56.0, 55.2, 54.3, 48.7, 48.5, $42.8,41.4,39.2,37.4,37.2,37.1,27.5,22.6,20.3,19.9,19.8$, 15.5; IR (CCl ${ }_{4}$) 3622, 3539, 1741.

Data for 40: ${ }^{1} \mathrm{H}$ NMR 4.18 ($\mathrm{d}, 1, \mathrm{~J}=11.3$), 3.43 (dd, $1, \mathrm{~J}=$ $11.0,4.0$), 3.33 ($\mathrm{d}, 1, \mathrm{~J}=11.3$), 3.02 (dd, $1, \mathrm{~J}=18.3,2.9$), 2.03$0.81(\mathrm{~m}, 16), 1.99(\mathrm{~d}, 1, \mathrm{~J}=18.3), 1.35(\mathrm{~s}, 3), 1.24(\mathrm{~s}, 3), 0.89$ (s, 3); ${ }^{13}$ C NMR 172.3, 80.5, 80.3, 64.2, 56.3, 56.2, 47.6, 43.7, 42.9, 38.7, 38.2, 37.8, 36.9, 34.8, 28.2, 27.5, 22.5, 18.6, 17.9, 16.3; IR (CCl ${ }_{4}$) 3736, 3622, 1732.

Preparation of Tosylhydrazone 41. Tosylhydrazide (17 $\mathrm{mg}, 0.092 \mathrm{mmol})$ was added in one portion to a solution of 39 ($24 \mathrm{mg}, 0.077 \mathrm{mmol}$) in $3 \times 10^{-3} \mathrm{M} \mathrm{HCl}$ in EtOH (2.5 mL), and the resulting mixture was heated at reflux for 3 h . Additional $\mathrm{TsNHNH}_{2}(14 \mathrm{mg}, 0.075 \mathrm{mmol})$ was added, and heating was continued for another 2 h . The reaction was cooled to room temperature, and the solvent was removed. Purification of the residue by flash chromatography on silica gel (2:1 EtOAc/hexane) gave 19 mg (51\%) of 41: ${ }^{1} \mathrm{H}$ NMR 7.80 (d, 2, J = 8.3), 7.66 ($\mathrm{s}, 1, \mathrm{NH}$), 7.28 (d, 2, J = 8.3), $4.20(\mathrm{~d}, 1$, $\mathrm{J}=11.0$), 3.44 (dd, $1, \mathrm{~J}=11.3,4.4$), 3.25 (d, 1, J = 11.0), 2.55 (dd, 1, J = 17.4, 2.6), $2.41(\mathrm{~s}, 3), 1.87-0.80(\mathrm{~m}, 15), 1.59(\mathrm{~d}, 1$, $\mathrm{J}=17.4), 1.32(\mathrm{dd}, 1, \mathrm{~J}=11.3,2.4), 1.23(\mathrm{~s}, 3), 0.98(\mathrm{~s}, 3)$, 0.78 (s, 3); ${ }^{13}$ C NMR 170.2, 143.6, 135.6, 129.3 (2 C), 127.9 (2 C), 80.5, 64.3, 55.8, 55.7, 55.1, 44.8, 42.7, 40.8, 40.8, 38.9, 37.6, $37.4,37.0,27.3,22.7,21.9,21.6,20.2,19.8,15.6$.
($4 \alpha, 8,13 \beta$)-13-Methyl-17-norkaur-15-ene-3,18-diol (Bey-er-15-ene-3 β, 19-diol, 4). n-BuLi ($200 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$ of 2.5 M solution in hexane) was added to a solution of 41 (13 mg , 0.026 mmol) in ether (4 mL), and the resulting mixture was stirred at room temperature overnight. The reaction was quenched with water and extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent afforded 6.2 mg of crude product. Purification by flash chromatography on silica gel (1:1 hexane/E tOAc) gave 5.0 mg (64%) of pure 4: ${ }^{1} \mathrm{H}$ NMR 5.63 ($d, 1, \mathrm{~J}=5.5$), 5.46 ($\mathrm{d}, 1, \mathrm{~J}=5.5$), $4.20(\mathrm{~d}, 1, \mathrm{~J}=11.0$), 3.42 (dd, 1, J = 10.7, 4.3), 3.32 (d, 1, J = 11.0), 1.82-0.80 (m, $15), 1.45$ (dd, 1, J $=9.8,2.8$), 1.23 (s, 3), 0.99 ($\mathrm{s}, 3$), 0.68 (s, 3); ${ }^{13}$ C NMR 136.7, 134.7, 81.0, 64.5, 60.9, 55.9, 52.6, 48.7, 43.6, 42.8, 37.4, 37.1, 36.8, 33.1, 27.8, 24.9, 22.6, 20.4, 19.9, 15.7; IR (CCl_{4}) 3629, 3539. The ${ }^{1} \mathrm{H}$ NMR spectral data for 4 are identical to those reported for the natural product. ${ }^{6}$ The ${ }^{13} \mathrm{C}$ NMR spectral data for 4 correspond appropriately to those reported for beyer-15-ene, beyer-15-ene-19-ol, and beyer-15-en-3 β-ol. ${ }^{22-24}$
Acknowledgment. We thank the National Institutes of Health (Grant GM 46470) for generous financial support.

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of selected compounds and tables of X-ray data for $\mathbf{2}$ (43 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm edition of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

J O981238X

[^0]: (1) For reviews of $\mathrm{Mn}(\mathrm{OAc})_{3}$ as an oxidant see: (a) Snider, B. B. Chem. Rev. 1996, 96, 339. (b) Melikyan, G. G. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New Y ork, 1997; Vol. 49, Chapter 3.
 (2) (a) Snider, B. B.; M ohan, R. M.; Kates, S. A. Tetrahedron Lett. 1987, 841. (b) Snider, B. B.; Dombroski, M. A. J. Org. Chem. 1987, 52, 5487. (c) Dombroski, M. A.; K ates, S. A.; Snider, B. B. J. Am. Chem. Soc. 1990, 112, 2759.

[^1]: (3) (a) Zoretic, P. A.; Zhang, Y.; Fang, H.; Ribeiro, A. A.; Dubay, G. J. Org. Chem. 1998, 63, 1162. (b) Zoretic, P. A.; Wang, M.; Zhang, Y.; Shen, Z. J. Org. Chem. 1996, 61, 1806. (c) Zoretic, P. A.; Chen, Z.; Zhang, Y.; Ribeiro, A. A. Tetrahedron Lett. 1996, 7909. (d) Zoretic, P. A.; Zhang, Y.; Ribeiro, A. A. Tetrahedron Lett. 1996, 1751. (e) Zoretic, P. A.; Wang, M. Synth. Commun. 1996, 26, 2783 and references therein. (f) Zoretic, P. A.; Fang, H.; Riberio, A. A. J . Org. Chem. 1998, 63, 4779.
 (4) F or a review of diterpene synthesis see: Goldsmith, D. In The Total Synthesis of Natural Products; ApSimon, J., Ed.; Wiley: New York, 1992; Vol. 8, pp 1-243.
 (5) (a) M osettig, E.; Beglinger, U.; Dolder, F.; Lichti, H.; Quitt, P.; Waters, J. A. J. Am. Chem. Soc. 1963, 85, 2305. (b) Mosettig, E.; Nes, W. J. Org. Chem. 1955, 20, 884.
 (6) Lloyd, H. A.; Fales, H. M. Tetrahedron Lett. 1967, 4891.

[^2]: (7) (a) Negishi, E.; Zhang, Y.; Bagheri, V. Tetrahedron Lett. 1987, 28, 5793 and references therein. (b) Zhang, Y.; Wu, G.; Agnel, G.; Negishi, E. J. Am. Chem. Soc. 1990, 112, 8590. (c) Zhang, Y. Ph.D. Thesis, Purdue University, 1989.
 (8) (a) Takacs, J. M. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; Wiley: New York, 1995; Vol. 5, p 3191. (b) Baker, K. V.; Brown, J. M.; Hughes, N.; Skarnulis, A. J.; Sexton, A. J. Org. Chem. 1991, 56, 698.
 (9) Hooz, J.; Calzada, J. G.; McMaster, D. Tetrahedron Lett. 1985, 271.
 (10) Duboudin, J. G.; J ousseaume, B. J . Organomet. Chem. 1979, 168, 1.
 (11) Corey, E. J.; Lin, S. J. Am. Chem. Soc. 1996, 118, 8765.

[^3]: (12) These chemical shifts are very similar to those of 3-methylenecyclooctene: Stierman, T. J.; J ohnson, R. P. J. Am. Chem. Soc. 1985, 107, 3971.
 (13) Snider, B. B.; Merritt, J . E. Tetrahedron 1991, 47, 8663.

[^4]: (14) (a) Kuwajima, I.; Doi, Y. Tetrahedron Lett. 1972, 1163. (b) Coates, R. M.; Ley, D. A.; Cavender, P. L. J. Org. Chem. 1978, 43, 4915.
 (15) Horner-E mmons reaction of aldehyde $\mathbf{2 0}$ with triethyl 2-phosphonopropionate yielded 84\% of α, β-unsaturated ester 21 as a 1.3:1 mixture of E- and Z-isomers.
 (16) (a) Thomas, A. F. Swiss Patent 510,602, 1971. (b) Thomas, A. F. J. Am. Chem. Soc. 1969, 91, 3281. (c) Thomas, A. F. Chem. Commun. 1967, 947. (d) Cookson, R. C.; Rogers, N. R. J. Chem. Soc., Perkin Trans. 1 1973, 2741.

[^5]: (17) X-ray crystallographic data have been deposited at the Cambridge Crystallographic Data Centre.
 (18) Aranda, G.; Lallemand, J .-Y.; Azerad, R.; Maurs, M.; Cortes, M.; Ramirez, H.; Vernal, G. Synth. Commun. 1994, 24, 2525.

[^6]: (19) Ireland, R. E.; Mander, L. N. Tetrahedron Lett. 1965, 2627; Mori, K.; Matsui, M. Tetrahedron Lett. 1970, 3287.
 (20) Shapiro, R. H. In Organic Reactions; Dauben, W. G., Ed.; Wiley: New York, 1976; Vol. 23, Chapter 3.
 (21) (a) Bailey, P. S. In Ozonation in Organic Chemistry; Trahanovsky, W., Ed.; Academic: New York, 1978; Vol. 1, pp 147-183. (b) Bailey, P. S. Chem. Ber. 1955, 88, 795. (c) Hanson, J. R. J. Chem. Soc. 1963, 5061.

[^7]: (22) Delgado, G.; Romo de Vivar, A.; Ortega, A.; Cárdenas, J.; Schlemper, E. O. Phytochemistry 1983, 22, 1227.
 (23) von Carstenn-Lichterfelde, C.; Pascual, C.; Rabanal, R. M.; Rodriguez, B.; Valverde, S. Tetrahedron 1977, 33, 1989.
 (24) (a) Grande, M.; Morán, J.; Macías, M. J.; Mancheño, B. Phytochem. Anal. 1993, 4, 19; Chem. Abstr. 1993, 118, 229498w.

